Searches for lepton flavor and lepton number violation in kaon decays at CERN Mauro Raggi LNF for the NA48/2 and NA62 collaborations Deep Inelastic Scattering 2011 April 11-15, 2011 Newport News VA USA #### Outline - **☑** NA48/2 and NA62 experiments - ∠ Lepton Flavor violation in R_K - Physics Motivations; - 2009 experimental status; - K_{e2} and K_{u2} data samples; - Background studies & systematic effects; - NA62 R_K final result on 40% of the data sample; - ✓ Lepton number violation in $K^+ \rightarrow \pi^- \mu^+ \mu^+$ - ☑ Conclusion and prospects; #### NA62 @ CERN SpS North Area #### NA62 collaboration: Birmingham, Bristol, CERN, Dubna, Fairfax, Ferrara, Florence, Frascati, Glasgow, IHEP Protvino, INR Moscow, Liverpool, Louvain-la-Neuve, Mainz, Merced, Naples, Perugia, Pisa, Rome I, Rome II, Saclay, San Luis Potosí, SLAC, Sofia, TRIUMF, Turin #### NA48/2 and NA62 detector #### LKr EM calorimeter $$\frac{\sigma(E)}{E} = \frac{3.2\%}{\sqrt{E}} \oplus \frac{9\%}{E} \oplus 0.4\%$$ $$\sigma_{x,y} < 1.3mm$$ #### **Spectrometer** - 4 Drift Chambers - Magnet $$\frac{\sigma(p)}{p} = 0.47\% \oplus 0.02 \times p(GeV)$$ $$\sigma_{VTX}^{x,y} \sim 2mm$$ #### **Trigger Hodoscope** $\sigma_t \approx 150 ps$ #### NA62 phase II data taking: • Two weeks in 2008 • Three years starting from 2013? (K⁺ $\rightarrow \pi$ ⁺vv data) # Lepton Flavor violation in R_K : $R_K = \Gamma(K^{\pm} \rightarrow e^{\pm} \nu_e) / \Gamma(K^{\pm} \rightarrow \mu^{\pm} \nu_{\mu})$ # $R_K = \Gamma(K_{e2})/\Gamma(K_{u2})$ in the SM Sensitive to lepton flavor violation and its SM expectation: $$R_K = \frac{\Gamma(K^{\pm} \to e^{\pm} \nu)}{\Gamma(K^{\pm} \to \mu^{\pm} \nu)} = \boxed{\frac{m_e^2}{m_\mu^2} \left(\frac{m_K^2 - m_e^2}{m_K^2 - m_\mu^2}\right)^2 \cdot (1 + \boxed{\delta R_K^{rad.corr.}})} \begin{array}{l} \text{Few \% due to:} \\ \text{K->ev(γ) IB process} \end{array}$$ Helicty suppression factor ~10⁻⁵ - ✓ <u>SM prediction:</u> excellent <u>sub-permille</u> accuracy due to cancellation of hadronic uncertainties. - Arr Measurements of R_K and R_{π} have long been considered as tests of lepton universality. - ightharpoonup Recently understood: helicity suppression of R_K might enhance sensitivity to non-SM Theoretical expect. (Phys. Lett. 99 (2007) 231801): $R_K^{SM} = (2.477 \pm 0.001) \times 10^{-5} \quad (0.04\% \text{ precision!})$ $R_\pi^{SM} = (12.352 \pm 0.001) \times 10^{-5}$ # R_K beyond the SM 1 loop #### 2 Higgs Doublet Models - one-loop level Dominant contribution to ΔR_{κ} : H[±] mediated LFV (rather than LFC) with emission of v_{τ} $$R_K^{LFV} \approx R_K^{SM} \left[1 + \left(\frac{m_K^4}{M_{H^{\pm}}^4} \right) \left(\frac{m_{\tau}^2}{M_e^2} \right) |\Delta_{13}|^2 \tan^6 \beta \right]$$ PRD 74 (2006) 011701, JHEP 0811 (2008) 042 3 unknown parameters: M_{H+} , Δ_{13} , tan β Effect in large tan β regime with a massive H[±]_(Δ_{13} =5×10⁻⁴, tan β =40, M_H=500 GeV/c²) lead to $R_K^{MSSM} = R_K^{SM}(1+0.01) \sim 1\%$ is measurable! > Larger effects foreseen in B decays due to $(M_B/M_K)^4 \sim 10^4$: $B_{uv}/B_{vv} \rightarrow \sim 50\%$ enhancement; $B_{ev}/B_{rv} \rightarrow$ enhancement factor 10! Out of reach: $Br^{SM}(B_{ev}) \sim 10^{-11}$ # 2009 R_K experimental status After first searches in the early Seventies new interest rose by PRD 74 (2006) 01170 Studies in the NA48/2 (@ CERN) collaboration lead only to preliminary results Recent improvement: KLOE (LNF). Data collected in 2001–2005, 13.8K K_{e2} candidates, 16% background. R_K =(2.493±0.031)×10⁻⁵ ($\delta R_K/R_K$ =1.3%) (EPJ C64 (2009) 627) R_K world average (March 2009) NA62 (phase I) dedicated 2007 data taking goal: ~150K K_{e2} candidates, <10% background, $\delta R_K/R_K$ <0.5% : sub % measurement able to spot for deviation from SM. # K_{e2} vs K_{u2} selection #### Common selection criteria - ☑ One reconstructed track; - ☑ Geometrical acceptance cuts; - ☑ K decay vertex: closest approach of track & nominal kaon axis; - ☑ Veto extra LKr energy deposition clusters; - ☑ Track momentum: 13GeV/c<p<65GeV/c #### Kinematic separation M²_{miss}(e) - Missing mass $M_{miss}^2(e) = (P_K P_l)^2$ - Good K_{e2}/K_{u2} separation at $p_{track} < 30 \text{GeV}/c$ #### Separation by particle ID E/p - E/p = (LKr energy dep./track momentum) - 0.95<E/p<1.10 for electrons, - E/p < 0.85 for muons. - Powerful μ[±] suppression in e[±] sample: f~10⁶ E/p: Energy/Track momentum # NA62 K_{e2} sample (40% data set) NA62 result 40% data sample: 59,813 K⁺ \rightarrow e⁺v candidates, (99.27±0.05) electron ID efficiency, B/(S+B) = (8.71±0.24)% NA62 estimated total K_{e2} sample: \sim 123K K⁺ & \sim 23K K⁻ candidates. # Ku2 background measurement $P(\mu \rightarrow e)$: measurement (2007 special muon run) vs Geant4-based simulation [Cross-section model: Phys. Atom. Nucl. 60 (1997) 576] Result: $B/(S+B) = (6.11\pm0.22)\%$ Thickness: Width: Height: Area: Duration: ~10X₀ (Pb+Fe) 240cm (=HOD size) 18cm (=3 counters) ~20% of HOD area ~50% of R_K runs + special muon runs # K_{e2} backgrounds: summary (selection criteria, e.g. Z_{vertex} and M_{miss}^2 , are optimized individually in each P_{track} bin) #### **Backgrounds** | Source | B/(S+B) | |-----------------------------------|-------------------| | K_{u2} | (6.11±0.22)% | | K _{u2} (μ→e) | $(0.27\pm0.04)\%$ | | $K_{e2\gamma}$ (SD ⁺) | $(1.07\pm0.05)\%$ | | Beam halo | (1.16±0.06)% | | K _{e3(D)} | (0.05±0.03)% | | $K_{2\pi(D)}$ | (0.05±0.03)% | | Total | (8.71±0.24)% | Record K_{e2} sample: 59,813 candidates with low background $B/(S+B) = (8.7\pm0.24)\%$ Lepton momentum bins are differently affected by backgrounds and thus the systematic uncertainties. # NA62 K_{u2} sample (40% data set) #### K_{u2} candidates # Acquired using a trigger pre-scaled by D=150 18.03M candidates with a background contribution of: $B/(S+B) = (0.38\pm0.01)\%$, # NA62 R_K measurement strategy - \mathbf{V} $\mathbf{K}_{e2}/\mathbf{K}_{u2}$ candidates are collected <u>simultaneously</u>: - the result does not need any kaon flux measurement; - several systematic effects cancel at first order (e.g. reconstruction/trigger efficiencies, time-dependent effects). - ☑ Counting experiment, independently in 10 lepton momentum bins - owing to strong momentum dependence of backgrounds - ☑ MC simulations used to a limited extent only: - Geometrical acceptance and simulation of "catastrophic" bremsstrahlung by μ. $$R_{K} = \frac{N(K_{e2}) - N_{B}(K_{e2})}{N(K_{\mu 2}) - N_{B}(K_{\mu 2})} \cdot \frac{A(K_{\mu 2})\varepsilon(K_{\mu 2})f_{\mu}}{A(K_{e2})\varepsilon(K_{e2})f_{e}} \cdot \frac{1}{f_{LKr}}$$ $N(K_{e2})$, $N(K_{u2})$: numbers of selected K_{l2} candidates; $N_B(K_{e2})$, $N_B(K_{\mu 2})$: numbers of background events in Kl2 samples; $A(K_{e2}), A(K_{u2})$: MC geometrical acceptances (no ID); $f_{e'}, f_{u}$: directly measured particle ID efficiencies; $\epsilon(K_{e2})/\epsilon(K_{\mu 2})$: E_{LKr} EM calorimeter trigger condition efficiency; f_{LKr} =0.9980(3) : global LKr EM calorimeter readout efficiency. # NA62 R_K final result (40% data set) $$R_{K} = (2.487 \pm 0.011_{\text{stat}} \pm 0.007_{\text{syst}}) \times 10^{-5}$$ $$R_{K} = (2.487 \pm 0.013) \times 10^{-5}_{PLB 698 (2011) 105-114}$$ The whole 2007 sample will allow statistical uncertainty $\sim 0.3\%$, total uncertainty of $\sim 0.4\%$. #### Uncertainties | Source | $\delta R_{\rm K} \times 10^5$ | |---------------------------|--------------------------------| | Statistical (0.44%) | 0.011 | | $K_{u2}(BG)$ | 0.005 | | Beam halo (BG) | 0.001 | | $K_{e2\gamma}$ (SD+) (BG) | 0.001 | | K _{2p} Ke3 | 0.001 | | Spectrometer align | 0.001 | | Helium purity | 0.003 | | Acceptance (MC) | 0.002 | | Positron ID | 0.001 | | 1TRK trigger eff. | 0.002 | | Lkr readout eff | 0.001 | | Total (0.52%) | 0.013 | ### NA62 R_K: effect on world average NA48/2 preliminary results excluded they are superseded by NA62 one. KLOE preliminary result excluded superseded by KLOE final. | World average | $\delta R_{\rm K} \times 10^5$ | Precision | |---------------|--------------------------------|-----------| | March 2009 | 2.467±0.024 | 1.% | | Jaunuary 2011 | 2.487±0.012 | 0.5% | | Theory | 2.477±0.001 | 0.04% | # R_K: sensitivity to new physics R_K world average is currently in agreement with the SM expectation at $\sim 0.8 \ \sigma$. Any significant enhancement with respect to the SM value would be an evidence of new physics. This result can be used to exclude the presence of H^{\pm} in a wide range of $M_{H\pm}$ Even for tiny values of the LFV slepton mixing Δ_{13} , sensitivity to H[±] in $R_K = K_{e2}/K_{\mu 2}$ is better than in $B \rightarrow \tau v$ # Lepton number violation in K+→π⁻μ+μ+ #### **Lepton number violation in K** $^{+}\rightarrow\pi^{-}\mu^{+}\mu^{+}$ $K^+ \rightarrow \pi^- \mu^+ \mu^+$ proceeds if the neutrino v is a Majorana particle: $BR \approx 10^{-8} \times (< m_{\mu\mu} > /TeV)^2$ <m_{μμ} > being the effective Majorana neutrino mass K. Zuber, PLB 479 (2000) 33; L. Littenberg, R. Shrock, PRB491 (2000) 285 The best experimental limit to these processes has been set by E865 using a sample of 400 K⁺ $\rightarrow \pi^{+}\mu^{-}\mu^{+}$. From the study of the background events they found: BR(K⁺ $$\rightarrow \pi^- \mu^+ \mu^+$$) < 3×10⁻⁹ 90% CL Phys.Rev.Lett 85:2877-2880,2000 ### NA48/2 K $^{\pm}$ \rightarrow $\pi^{\pm}\mu^{+}\mu^{-}$ sample ☑ 3,120 candidates (~4 times world sample) PLB 697 (2011) 107 ☑ Branching fraction, CPV and Forward Backward asymmetries measured | Exp | Beam | Evt | BRx10 ⁸ | |---------|----------------|------|---------------------| | E787 | K ⁺ | 207 | 5.0±0.4±0.6±0.7 | | E865 | K ⁺ | 430 | 9.22±0.60±0.49 | | HyperCP | K± | 110 | 9.8±1.0±0.5 | | NA48/2 | K± | 3120 | 9.62±0.21±0.11±0.07 | # Search for LNV $K^{\pm} \rightarrow \pi^{\mp} \mu^{\pm} \mu^{\pm}$ A factor of 3 improvement on the upper limit for BR(K⁺ $\rightarrow \pi^-\mu^+\mu^+$) wrt E865 (2000) Candidate Lepton Number Violating $K^{\pm} \rightarrow \pi^{\mp} \mu^{\pm} \mu^{\pm}$: $$N_{data} = 52$$ PLB 697 (2011) 107 $N_{bkg} = 52.6\pm19.8_{syst}$ (MC predicted) $$BR(K^{\pm} \rightarrow \pi^{\mp} \mu^{\pm} \mu^{\pm}) < 1.1 \times 10^{-9} (90\% CL)$$ allowing a bound on the effective Majorana neutrino mass $< m_{\mu\mu} > <$ of 300 GeV/ c^2 to be established #### Conclusion - \square Due to the helicity suppression factor (~10⁵) of the K_{e2} decay, the ratio R_K is stringent test of the Standard Model. - \square NA62 during data taking in 2007/08 has collected K_{e2} sample ~10 times the world sample with a low 8.7% background. - ☑ Final NA62 result based on ~40% of the NA62 K_{e2} candidates leads to: $R_{K} = (2.487\pm0.013)\times10^{-5}$, reaching ~ 0.5% accuracy PLB 698 (2011) 105–114 - \square The R_K value is compatible to the SM prediction in within 0.8 σ - ☑ The precision is expected to be improved to better than $\delta R_K/R_K$ =0.4% using the full NA62 (Phase I) data sample and pushed to 0.2% NA62 (Phase II). - \square R_K measurement with ~0.2% precision is expected to be performed in the framework of the NA62 (phase II) experiment. - \square The best upper limit on LNV in BR(K $^{\pm} \rightarrow \pi^{\mp} \mu^{\pm} \mu^{\pm}$)<1x10⁻⁹ 90%CL has been set PLB 697 (2011) 107 # Backup slides # Leptonic meson decays: $P^+ \rightarrow I^+ \nu$ #### 2 Higgs Doublet Models - tree level Suppressed by elicity (mostly in Ke2) Lepton Flavor Universality only phase space correction needed in the leptonic vertex QED corrections needed to treat the electron radiation #### 2 Higgs Doublet Models - tree level K₁₂ can proceed via exchange of charged Higgs H⁺ instead of W⁺ #### Using $M_{H+}=500 \text{GeV/c}^2$, $\tan \beta = 40$ $\pi^+ \rightarrow lv$: $\Delta\Gamma/\Gamma_{SM} \approx -2(m_\pi/m_H)^2 m_d/(m_u+m_d) \tan^2\beta \approx -2 \times 10^{-4}$ $K^+ \rightarrow lv$: $\Delta\Gamma/\Gamma_{SM} \approx -2(m_K/m_H)^2 \tan^2\beta \approx -0.3\%$ $D_s^+ \rightarrow lv: \Delta\Gamma/\Gamma_{SM} \approx -2(m_D/m_H)^2 (m_s/m_c) \tan^2\beta \approx -0.4\%$ B⁺ \rightarrow lv: $\Delta\Gamma/\Gamma_{SM} \approx -2(m_B/m_H)2 tan^2\beta \approx -30\%$ ### Trigger logic Minimum bias (high efficiency, but low purity) trigger configuration used K_{e2} condition: $Q_1 \times E_{LKr} \times 1TRK$. Purity ~10⁻⁵. $K_{\mu 2}$ condition: $Q_1 \times 1$ TRK/D, downscaling (D) 50 to 150. Purity ~2%. - Efficiency of K_{e2} trigger: monitored with K_{u2} & other control triggers. - E_{LKr} inefficiency for electrons measured to be $(0.05\pm0.01)\%$ for $p_{track}>15$ GeV/c. - Different trigger conditions for signal and normalization! #### Beam halo background Electrons produced by beam halo muons via $\mu \rightarrow e$ decay can mimic K_{e2} decays #### **Halo background measurement:** - \square Halo background much higher for K_{e2}^- (~20%) than for K_{e2}^+ (~1%). - \square ~90% of the data sample is K⁺ only, ~10% is K⁻ only. - ☑ K⁻ sample is used to directly measure K⁺ halo component and vice versa - K⁺ selection applied to K⁻ run to calculate halo BG probability The background is measured to sub-permille precision, and strongly depends on decay vertex position and track momentum. The selection criteria (esp. Z_{vertex}) are optimized to minimize the halo background. $$B/(S+B) = (1.16\pm0.06)\%$$ Uncertainty is due to the limited size of the K⁻ control sample.